Разное




РазДЕЛЫ САЙТА

Боевики, детективы
Документалка
Драмы, триллеры
Исторические
Комедии
Мелодрамы
Мультяшки
Обучающее, познание
Приключения
Сказки, фэнтези
Старое, доброе
Ужасы
Фантастика
х х х х х х х х х
Блюз, джаз, соул
Инструментальная
Классическая
Клипы
Минусовки
Музыка игр и кино
Поп
Разная
Ретро
Рок, метал
Рэп, хип-хоп
Шансон
х х х х х х х х х
Автософт и навигация
Аудиокниги
Книги и журналы
Фото и видео, приколы



СЛучайные материалы

Гаусс Максим - Армада. Книга 3. Реванш (Аудиокнига)
Гаусс Максим - Армада. Книга 3. Реванш (Аудиокнига)

TikTok Billboard Top 50 Singles Chart (13-January-2024) (2024)
TikTok Billboard Top 50 Singles Chart (13-January-2024) (2024)

Trance Emotions Vol. 12 Best of Edm Playlist Compilation 2024 (2024)
Trance Emotions Vol. 12 Best of Edm Playlist Compilation 2024 (2024)

Best Trap Ita 2024 (2024) FLAC
Best Trap Ita 2024 (2024) FLAC

Trance Mission (2024)
Trance Mission (2024)


Главная » 2019 » Январь » 16 » Теория и практика машинного обучения

Теория и практика машинного обучения

16:15

Теория и практика машинного обучения — Учебное пособие рассматривает вопросы, связанные с анализом данных: модели, алгоритмы, методы и их реализацию на языке Python. Особое внимание уделено анализу временных рядов.
С теоретической стороны машинное обучение – дисциплина, находящаяся на пересечении математической статистики, численных методов оптимизации, теории вероятностей, а также дискретного анализа. С помощью ее методов происходит решение задачи извлечения знаний из данных, которой занимается еще только формирующаяся область «Интеллектуальный анализ данных» (DataMining).
С практической же стороны машинное обучение нацелено на создание систем, способных адаптироваться к решению различных задач без явного кодирования алгоритма, то есть систем, способных обучаться.
В последних разделах книги обучающемуся предлагаются контрольные вопросы по пройденным темам, а также задачи для выполнения, с помощью которых он сможет проверить себя и закрепить полученные навыки.
Книга предназначена для студентов группы направлений 09, а также для студентов других групп направлений, изучающих дисциплины, связанные с разработкой приложений в области анализа данных, в том числе TimeSeriesDataMinig и DataMining.

Название: Теория и практика машинного обучения
Автор: Воронина В. В., Михеев А. В., Ярушкина Н. Г.
Издательство: УлГТУ
Год: 2017
Страниц: 290
Формат: PDF, DJVU
Размер: 10,95 МБ
ISBN: 978-5-9795-1712-4
Качество: отличное

Содержание:

Введение
Задачи машинного обучения
Пространство признаков
Формальное определение понятия «обучение»
Общий алгоритм машинного обучения
Типы задач машинного обучения
Способы обучения и оценки его качества
Типовые задачи при подготовке данных и обучении моделей
Учет пропусков
Кодирование нечисловых признаков
Приведение данных к единому масштабу и стандартизация
Разметка данных
Переобучение
Модели и алгоритмы машинного обучения
Методы теории вероятностей
Деревья решений
Статистические модели и методы
Модели и методы нечеткой логики
Нечеткие множества
Лингвистические переменные
Операции нечеткой логики
Нечеткие системы
Нечеткая логика в анализе временных рядов
Метод моделирования нечетких временных рядов
Пример моделирования временного ряда в нечетком подходе
Извлечение знаний из временных рядов
Нечеткое сглаживание временного ряда
Нечеткая регрессия
ACL-шкала и нечеткая кластеризация объектов
Искусственные нейронные сети
Особенности нейронных сетей
Определение модели искусственной нейронной сети
Первая формальная модель и первая реализация нейронной сети
Многослойный персептрон (MLP)
Сверточные (ConvolutionalNeuralNet) и Глубокие (DeepNet) Сети
Карты (ART, SFAM)
Рекуррентные сети (Recurrent Neural Network)
Самоорганизующиеся карты (Self-organization map, SOM)
Автокодировщики (AutoEncoder)
Импульсные (Спайковые) сети
Причины бурного развития ИНС сегодня
Борьба с переобучением в ИНС
Обратное распространение ошибки
Нечеткие нейронные сети
Генетические алгоритмы
Нечеткие системы с генетической настройкой
Нечеткие нейронные сети с генетическим проектированием
Генетическая оптимизация F-преобразования временных рядов
Разработка приложений в сфере машинного обучения
Основы работы с Python
Элементарные операции с данными
Работа с DataFrame
Предобработка данных. Стандартизация и нормализация
Работа с деревьями решений
Сохранение и загрузка обученной модели
Работа с логистической регрессией
Решение задачи ранжирования признаков
Работа с полиномиальной регрессией
Работа с простейшими моделями нейронных сетей
Реализация алгоритма обучения нейронной сети
Регуляризация и сеть прямого распространения
Работа с библиотеками Keras и Theano. Настройка под Windows
Получение данных средствами Keras
Создание и обучение модели сверточной сети
Загрузка и сохранение сложных моделей
Рекуррентные сети для прогнозирования временных рядов
Контрольные вопросы и тестовые задания
Тест «Общие сведения о машинном обучении»
Проблема переобучения
Регрессия
Модели и методы нечеткой логики
Нечеткие временные ряды
Нечеткая регрессия
Генетические алгоритмы
Нечеткая кластеризация
Искусственные нейронные сети и глубинное обучение
Тест «Искусственные нейронные сети»
Практические задания
Работа с файлом данных Титаника
Работа по отбору признаков
Многослойный персептрон
Реализация алгоритма обратного распространения ошибки
Регуляризация и сеть прямого распространения
Сравнение эффективности моделей из библиотеки Keras
Работа с библиотекой OpenCV
Нечеткая логика
Генетические алгоритмы
Нечеткая кластеризация объектов
Анализ временных рядов
Работа с рекуррентными сетями
Заключение
ссарий
Предметный указатель
Библиографический список

Скачать Теория и практика машинного обучения

Скачать с turbobit.net
Скачать с katfile.com
Скачать с www.up-4.net
Скачать с file-up.org

Скачать: Книги и журналы | Теги: Михеев, обучения, 2017, машинного, Воронина, практика, теория

Похожие материалы скачать бесплатно и без регистрации


К "Теория и практика машинного обучения"
пока нет комментариев, но Вы можете стать первым, кто его оставит!

Всего мнений: 0
avatar
Ищу на сайте

Случайный анекдот
Заходит мужик в пивнушку, а там стоит другой с таким здоровым пузом
и пиво пьет...
Первый, показывая на пузо: - что это у тебя ?
второй, гордо так: - это пресс !!!
первый достает пачку баксов: - мужик, вот это пресс, а ты чем-то болеешь.

Новое на сайте
Пока, к сожалению, ничего нет

Наша статистика

Присутствуют: 30
Неизвестных: 30
Знакомых: 0
Copyright by Anonimus © 2024